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ABSTRACT

We present a method that uses ensemble learning to com-
bine clinical and web-mined time-series data in order to pre-
dict future vaccination uptake. The clinical data is official
vaccination registries, and the web data is query frequen-
cies collected from Google Trends. Experiments with official
vaccine records show that our method predicts vaccination
uptake effectively (4.7 Root Mean Squared Error). Whereas
performance is best when combining clinical and web data,
using solely web data yields comparative performance. To
our knowledge, this is the first study to predict vaccination
uptake using web data (with and without clinical data).

1.

Predicting public health events, e.g. how many people
may get vaccinated in the near future, can reduce the re-
action time of public health professionals, resulting in more
efficient services and improved public health. Traditionally,
public health event prediction relied on clinical data (e.g. mi-
crobiological results or patient registries) that was collected
from designated bodies. In the last decade however, non-
clinical web data (e.g. search engine queries or microblog
messages), has been shown useful to the task of predicting
public health events. Clinical and web data are complemen-
tary sources of evidence: Whereas clinical data contributes
expert and curated information to the prediction, web data
contributes near real-time information on a large scale about
e.g. symptoms or health concerns that may go undetected
or unreported by the official clinical channels.

We present a method for predicting vaccination uptake
by combining clinical and web data using ensemble learning.
Combining such clinical and web search data for vaccination
uptake prediction is novel. So far, research on vaccination
uptake has focused on the effect of physician recommen-
dations on vaccination uptake [4]; how combined sources
of information (e.g. physician, television, friends) influence
people’s decisions about vaccination [5]; and the effects of
media coverage on vaccination uptake with respect to in-
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fluenza vaccination [11], HPV vaccination [8], and MMR
vaccination [17]. To our knowledge, our study is the first to
predict vaccination uptake using web data (with and with-
out clinical data).

Web and/or clinical data have been used before for other
types of health event predictions, e.g. influenza activity [6,
12, 13, 14, 16, 19], dengue fever [1] and cholera [3]. How
the different types of data should be handled has evolved
from using a unified model for both web and clinical data
[9, 18], to using ensemble methods that model separately
clinical and web data and then combine the outputs [15].
When web search query frequencies are used for prediction
[15, 16, 18], a single linear model is used to combine the
query frequencies into a prediction. Methods using query
frequencies select queries either by (i) timely correlation be-
tween query search frequency and the health event [6, 15,
16, 18], or by (ii) expert selection of queries [1, 14, 19]. Both
approaches have disadvantages. Approach (i) relies on cal-
culating the correlation between the health event time-series
and all queries, which is computationally expensive. It also
assumes that historic correlation equals predictive power in
the future, which may not always be the case. Approach
(ii) relies on human experts, which is costly and does not
scale well. In this work we propose a third approach: We
select queries based on web descriptions of the health event,
in our case of the vaccine in question, and we use an en-
semble learning approach, specifically stacking, to predict
vaccination uptake.

2. ENSEMBLE LEARNING PREDICTION

Vaccination uptake prediction with time-series data can
be formulated as: E(t) ~ E(t — 1), where E(t) is the pre-
dicted vaccination uptake at time ¢, and E(t — 1) is the
observed vaccination uptake at time ¢t — 1. We compute
E (t) using ensemble learning by combining separate predic-
tions on vaccination uptake based on clinical and web data
into one prediction. Ensemble learning combines predictions
from an ensemble of level-0 models into one prediction us-
ing a level-1 meta model. We use an ensemble method called
stacking. First, all level-0 models are trained. Then, a level-
1 model is trained to make a final prediction using all the
predictions of the level-0 models as input. We experiment
with three different types of level-1 models: a linear model,
support vector regression (SVR) with a linear kernel, and
SVR with a Gaussian kernel. Both our clinical and web
data are time-series, i.e. each data point has a temporal ref-
erence.



2.1 Level-1 models

Stacking with linear model. We define a linear model
with two explanatory variables: E(t) = u+81Ec(t)+F2Ew(t),
where E.(t) is the prediction based on clinical data at time
t, Ew (t) is the prediction based on web data at time ¢, and p,
1 and B2 denote the coefficients that need to be optimized.
We use ordinary least squares to find the coefficients that

. . 2
minimize: nﬁu% > (E'(t) —p— B1E:(t) — B2 Ew (t)) .
H,P1,P2
Stacking with SVR. SVR solves the same problem as the
linear model presented above, but with the possibility of
using kernels to transform the input into another feature

space. In addition p, 81 and B2 are selected to minimize
the following: Tgn% Y V(E®) —p—prEe(t) — BoEw(t)) +
H,P1,P2

%(;ﬁ + 5% + 55), where A is a hyperparameter controlling
the penalty for large coefficients, and V(r) is defined as 0
if |r| < € and otherwise |r| — e. The parameter e controls
how precise the prediction has to be before it is treated as
correct.

We experiment with an SVR with linear kernel and with
a CGaussian kernel defined as: K (z, ') = exp(—||z — z'||?),
where 7 is a hyperparameter.

2.2 Level-0 models

Prediction with clinical data. As level-0 models we use
three well-known time-series methods: autoregressive (AR)
models [18, 9], ARIMA and Holt Winters (HW).

AR models estimate E(t) as: E(t) = p+ ", BiE(t —1i)
where m is the number of autoregressive terms, p is the in-
tercept, and the s control the weight that each past obser-
vation has on the prediction. AR models assume that future
values of E can be predicted by a linear combination of the
m most recently observed values of E. With enough autore-
gressive terms AR models can handle seasonal changes, but
not general upwards or downwards trends.

An extension of the AR models are the ARIMA (Au-
toRegressive Integrated Moving Average) models. In ad-
dition to the autoregressive terms, these models also include
a moving average, which is a weighted sum of the ¢ most
recent forecasting errors. Let m denote the number of au-
toregressive terms and ¢ the number of moving averages;
then: E(t) = p+> ", BiE(t—i)+> 7, ¢j€t—; + €, where
e; = E(t) — E(t). To handle trend, the original signal E can
be differentiated one or more times [2].

HW forecasting is defined by three recursive equations
controlling: level, trend and seasonality. HW can forecast
time-series with both trend and seasonal changes. Each
equation is defined as a weighted sum in which the weight
of historic observations decreases exponentially with time.
HW forecasting with level, trend and seasonality is recur-
sively defined as:

level ar = a(E(t) — si—1) + (1 — a)(as—1 + be—1)
trend b = Blar — at—1) + (1 — B)be—1
seasonality st =v(E(t) —at) + (1 —7)se—

where [ is the length of the season and «, f and v are
the smoothing parameters which control the influence of
the historic level, trend and seasonality. Predictions are
made by combining level, trend and seasonality: FE(t) =
at—1 +bi—1 + St—141-
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Prediction with web data. As level-0 models we use
a linear model, bagging and weighted majority. Our web
data consists of time-stamped query frequencies (described
in Section 3).

Linear model. Given a collection of n query frequency time-
series, denoted @, we define a simple linear model as: E‘(t) =
A+ o @iQi(t), where p and o are coefficients to be es-
timated. Such a model can be fitted using any of several
methods, the most common being ordinary least squares.
Another approach is to use LASSO regularization which is
commonly used for making predictions using query frequen-
cies [15, 16, 18]. This approach adds an additional con-
straint to the optimization, namely that the sum of the co-
efficients should also be minimized. The weight of this sum
is controlled by the hyperparameter A. This approach can
be used to avoid overfitting and to reduce the coefficients of
non-informative features to zero and thereby induce a sparse
model. This is a useful property in this context because the
collection of queries might contain non-informative terms.
Bagging. With bagging, we consider the average of the pre-
dictions made on subsets of the training data. This helps
to reduce variance and overfitting. We generate subsets of
the training data by uniformly sampling with replacement
n datasets of size m. For each dataset a linear model, as
defined above, is fitted using LASSO regularization, where
the parameter \ is found using 3-fold cross-validation. The
prediction of the ensemble is the average of the n predictions.
Weighted Majority. We extend the bagging approach to a
boosting approach using a weighted majority (WM) algo-
rithm [10]. The WM algorithm works by combining predic-
tions from a collection of models using a weighted average.
Each model is associated with its own weight related to its
previous predictive performance. If the overall prediction
is wrong by a constant €, the weights are updated. The
updating works as follows: if the individual prediction of
a model has an error > €, a new weight is calculated as
w; = w; exp(—n), where w; is the weight for model 7 and
7 is a hyperparameter controlling the penalty for making
wrong predictions. Our collection of models is identical to
the models used for the bagging approach described above.

3. EXPERIMENTAL EVALUATION

Data'. We evaluate the effectiveness of our approach in
predicting vaccination uptake in Denmark for all official
children vaccines: DiTeKiPol-1, DiTeKiPol-2, DiTeKiPol-3,
DiTeKiPol-4, PCV-1, PCV-2, PCV-3, MMR-~1, MMR-2(4),
MMR-2(12), HPV-1, HPV-2 and HPV-3. We use as clinical
data the actual vaccination uptake recorded by the country’s
official body, the State Serum Institut. Specifically, the vac-
cination uptake is the total number of vaccines given in a
month divided by the number of people expected to be vac-
cinated that month (based on the size of the monthly birth
cohorts published by Statistics Denmark).

We use as web data web search queries that are related to
each vaccine. We generate these queries from descriptions of
each vaccine in: www.ssi.dk, www.patienthandbogen.dk, and
www.min.medicin.dk (authoritative medical health portals).
We remove stopwords and collect terms that occur in at
least two different descriptions of each vaccine. We treat
each term as a query (i.e. we use only single term queries)

LAl our data is freely available at:
redirect/c7j6MdrscL

https://sid.erda.dk/share_



Vaccine Terms in Danish (English)

MMR levende (alive), maeslinger (measles), vaccine, vaccinen (the vaccine), udbrud (outbreak), alvorlige (serious), faresyge (mumps), maneders (months), undersggelser (examinations)
beskyttelse (protection), voksne (adults), gravid (pregnant), kombineret (combined), dosis, hunde (dogs), alderen (the age), hjernebetzendelse (inflammation of the brain)
lungebetaendelse (pneumonia), gives (is given), mfr (mmr), rgde (red)

DiTeKiPol maeeslinger (measles), vaccinen (the vaccine), alvorlige (serious), beskyttelse (protection), kombineret (combined), vaccination, indeholder (contains), type, beskytter (protects)
sygdomme (illness), meningitis, forarsaget (caused), draebte (killed), b, kighoste (whooping cough), vare (lasts), polio, difteri (diphtheria), mindst (least), stivkrampe (tetanus)

PCV vaccinen (the vaccine), alvorlige (serious), alderen (the age), lungebetaendelse (pneumonia), vaccination, infektioner (infections), sygdomme (illness), forebygger (prevents)
meningitis, forarsaget (caused), antal (number), blodforgiftning (blood poisoning)

HPV beskyttelse (protection), gives (is given), vaccination, tilbuddet (the offer), kondylomer (condyloma), doser (doses), kgnsvorter (genital warts), tilbydes (is offered), piger (girls)

livmoderhalskraeft (cervical cancer), forventes (is expected), indeholder (contains), januar (january), langvarig (long term), indfert (introduced), tilbud (offer), type, human
beskytter (protects), effekten (the effect), skyldes (caused by), hpv, pigerne (the girls)

Table 1: Our 58 queries.

and we submit it to Google Trends using Denmark as the
geographical region and with the time period set to January
2011 - September 2015 (only limited coverage of Denmark
is available prior to 2011). Only 58 out of 85 queries had
enough coverage in Google Trends to return a result. We
use these 58 queries for our predictions (shown in Table 1).
Training. We use as training data all data which is avail-
able prior to the data point being predicted. Hence if we
are predicting the vaccination uptake in February 2014 we
train on data from January 2011 — January 2014. All models
are refitted for each time step. We use monthly time steps.
To allow for inference of seasonality, the level-0 models are
initialized with 24 months of available data (January 2011
— December 2012) as training data. For the level-1 models
we start by using 12 months of data (January 2013 — De-
cember 2013). We evaluate our predictions using the root
mean squared error (RMSE), which penalizes large errors
more than small.

Our prediction methods are fitted using R packages with
default settings at all times, except for the starting point for
HW, where we manually select a starting point of the opti-
mization if it cannot be completed with the default value.
The AR model is trained using 12 autoregressive terms to
capture seasonal variations. For bagging and weighted ma-
jority we use as many subsets as there are queries, each sub-
set contains 10 randomly sampled queries. For the weighted
majority we use n =5 and € = 2 for all experiments.
Results. Table 2 shows the results when predicting vaccina-
tion uptake using either clinical or web data only (with the
methods presented in Section 2). “Naive” refers to our naive
baseline E(t) = E(t—1). Our methods outperform the naive
baseline except for the HPV vaccines. This might be due to
an intense debate in Denmark regarding the safety of this
particular vaccine. Such a debate is likely to boost query
frequencies but not necessarily vaccination uptake (the fact
that many more people talk about HPV does not mean that
many more HPV vaccines are given). We see that meth-
ods using clinical data outperform the methods using web
data for the majority of the vaccines. But interestingly this
difference is not very big and for the vaccines DiTeKiPol-3
and DiTeKiPol-4 the methods based on web data perform
best. DiTeKiPol-4 is especially interesting since a shortage
in 2013 resulted in unusual vaccination behaviour for a few
months. When making predictions from web data our two
new approaches (bagging and WM) perform best for 9 of
the 13 vaccines.

Table 3 shows the results for the ensemble predictions us-
ing clinical and web data. Except for the three HPV vac-
cines, the ensemble approaches outperform all other meth-
ods using only one data source. We see that when using
an SVR with a Gaussian kernel as level-1 model we obtain
the best results, i.e. 7/13 lowest RMSE. When comparing
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Clinical data Web data

Naive HW AR12 ARIMA WM B L €]
MMR-1 20.704 | 18.149 18.606 15.574 | 16.609 16.597 16.605 30.387
MMR-2 (4) 20.582 13.110 16.566 16.284 | 15.841 15.635 15.500 29.288
MMR-2 (12) | 20.637 | 19.592 20.600 18.726 21.631 20.815  21.112 31.897
HPV-1 8.080 11.291 11.192 9.871 13.474 14.320 12.701 11.547
HPV-2 8.704 12.522 12.806 11.276 18.154 18.025 18.423 15.404
HPV-3 6.579 9.161 13.958 9.418 24.239 23.494 23.074 17.317
DiTeKiPol-1 | 14.091 6.700 5.185 5.097 8.067 8.058 8.069 15.913
DiTeKiPol-2 | 17.693 7.520 8.030 8.064 | 10.003 9.941 9.951 20.082
DiTeKiPol-3 | 17.884 | 17.596  20.936 19.459 17.160 17.160 = 17.158 30.424
DiTeKiPol-4 | 21.676 26.103  21.676 23.385 15.414 15.535 15.934  33.888
PCV-1 13.323 6.897 6.394 6.623 7.745 7.797 7.845 14.014
PCV-2 17.533 7.266 8.845 8.353 9.679 9.796 9.770 16.027
PCV-3 18.405 ‘ 7.877 7.781 7.634 | 10.410 10.364 10.368 15.582

Table 2: RMSE of predictions with only clinical or

web data. WM: weighted majority, B: Bagging, L:
linear model w. LASSO and O: linear model w.
OLS. Blue: lowest RMSE per vaccine. Bold: better
than naive.

within the methods using an SVR with a Gaussian kernel,
the HW+WM is the best performing method. The most im-
provements are obtained when combining predictions based
on web data with either predictions from HW or AR12.

4. CONCLUSIONS

We presented a method that uses ensemble learning to
combine clinical and web-mined time-series data to make
predictions about future vaccination uptake. As clinical
data we used official registries of vaccines in Denmark. As
web data we used query frequencies collected from Google
Trends. We created those queries by extracting terms from
publicly available descriptions of the vaccines on the web.
Experiments using all officially recommended children vac-
cines in Denmark for the period January 2011 — September
2015 showed that for 10/13 vaccines our ensemble learning
methods that combined clinical with web data for predic-
tion outperformed predictions using either clinical or web
data alone. Though this combination yields the lowest over-
all error, using only web data gives predictions with an er-
ror only slightly worse than for the predictions made using
only clinical data. This indicates the potential usefulness of
web data, such as query frequencies, to predict vaccination
uptake in countries where there is no national vaccination
registry. This work complements wider efforts in tackling
medical and health problems computationally with machine
learning or retrieval [20, 21].
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